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ABSTRACT

We consider ~ he problem of estimating a covariance matrix in the

~~~~V 

standard multivar ia te no rma l si tu ation~ Q~Q9Toss function is one

ob tained na tu ral ly from the problem of estimating several normal mean

vectors in an emp irical Bayes situation . Estimators which dominate any

constant multiple of the sample covariance matrix are presented . These V

estima tors work by shrinking the sample eigenvalues toward a central

V 

- value , in much the same way as the James—Stein estimator for a mean

vector shrinks the maximum likelihood estimators toward a common value .

I 

L

Key word8 and p hras~-~~. Multivariate empirical Bayes , Stein ’s estimator ,
minimax es t ima tion , mean of a mult ivariate normal distribution , estimating a
covar iance ma tr ix , James—S tein estimator , simultaneous estimation , combining
estimates.
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MULTLVARLATE EMPIRICAL BAYES AND ESTINATION OF COVARIANCE MATRICES

-
~ 1. INTRODUCTION AND SU~’Th1ARY

The p roblem of finding multivariate emp irical Bayes estimators

reduces under certain circumstances [1] to one of estimating the

iuver~e of an unknown covariance matrix ~ from an observed pxp co—

-. ~~ 
variance matrix S having the Wishart distribution with k degrees of

f r eedom and mean k~

(1.1) S—V k)

A using the loss func tion

-l ~ 
t rf(~~~~~~~~~) 2

SJ
1 (1.2) L(,~ , ; S) = —1k tr (.E )

We assume throughout tha t exists, and tha t k > p + 1. The usual

estimator of is the best multip le of S ’, which for this loss

I func tion is

V~~ 
~~~~~~ -•1(1.3) .~~ 

= (k—p—l)S

V 

The estimator (1.3) is the best unbiased estimator of V~~~
1 
and is min imax

wi th cons tan t risk (p+l)/k. We used (1.3) in [1] to derive a multi—

variate empirical Bayes estimator , a generalization of the James—Stein

estimator [3], for cases p > 2 .

*Dr. Efron is a consultant to The Rand ~.orpora tion and is a Pro—
fessor in the Department of Statistics , Si~ nford University. Dr. Morris
is on the staff of The Rand Corporation . 
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In the first main theorem we show that a uniformly better

I e s t i m a t o r  than (1.3) if p > 2 is

V 

(1.4) (k-p-1)S
1 
+ 

(p
2
+p-2)

1

Note that increases (1.3) by an amount proportional to the estimator

‘1. 5\ ~:
_1

• I —l t r(S) .!

which is the best unbiased estimator of when is known to be pro—

- 
. portlonal to the identity matrix . The risk functions of these estimators

and their mixtures ,

p (1. 6) ~~ l 
= ~~~~~~~~ + cxE~~ o < c ~ < 1,

which are also of in terest , are considered in Secs. 3, 5.

We show in the other main theorem , Sec. 4, tha t the empir ical Bayes

estimators derived from (1.6) are minimax, all domina ting the maximum

likelihood estimator X of a pxk matrix of means ~ for fixed 8. The

case cY = 1 corresponds to the James—Stein estimator app lied to all pk

values 8.. simultaneously while the new estimator with ~ = 0 un i f o r m ly

improves the multivariate empirical Bayes estimator of [1].

V 
-

~~ 
V _ _ _ _ _
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- 2. THE RELATIONSHIP BETWEEN MULTIVARIATE EMPIRICAL BAYES ESTIMATION
ANT) ESTIMATING THE iNVERSE OF A COVARIANCE MATRIX

Given k independen t p—dimensional norma l column vectors ,

X,, wi~.h X1 
having condit ional mean vector 0. and the iden tit y

covariance matrix V ! ’

(2.1)  • 1 . ind 
N ( O .~ ~~~~~ 

1, ..

- 
- and given that the unknown parameter vectors L . are an independent

sample from a muitivariate normal distribution with mean zero and

- covariance matrix A

- f (2 . 2 )  u thd N ( O , A) I = 1, . .., k

tuen the mu ltLvariate Bayes estimator of U . with respect to squared

error loss i s

I * —l
(2.3) 

~~~~~ 

— )x . i = 1, ..., k

where we have def ined

(2.4)

I In the emp iri cal Bayes situation A and ~ are unknown ,

I so the Bayes estimator (1.3) canno t be computed. The matrix ma~

be estimated , however , since (2.1) and (2.2) give tue marginal dist .ri—

-
• 

- bu t ion

~ 
(2 . 5 )  X . N ( O , ~ )

-~~~~

IL - 

_ _  
_- 
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to X .. A complete sufficient statistic for estimating ~ is S X X ’

V 
having the Wishart distribution (1.1), with X being the pxk matrix

~~l’ ‘~~ k~
’

If we estimate the pxk matrix S 
~~~~~~~~ ~~~~~~~~ 

0
k~ 

w ith normal ized

squared erro r loss func t ion

( 2. 6)  UO , 
~~~~ 

= 

~~~~~ ~~=l~~ =l~~ ij 
- 8 ) 2

by a rule s imilar to (2.3), of the form

(2.7) 

1 

8~~ ~~~~~~~~ )X

with � depending only o n S , then the risk R of (2.7), which is

:~ 
~ computed by averaging (2.6) over both distributions (2.1) and (2.2),

may be wri t ten

• 
* Q *(2.8) R = R + (R — R )EL (E , E ; 9 ) .

0Here R = 1 is the risk of the maximum likel ihood est imator S = X wi th
V ~— 1 * —l

E = 0 , R = 1 — tr (~ )/p is the risk of the Bayes estimator (2.3)

with >:
l 

= ~:: l known , and L(~~
1
~, >~~~; S) is the loss function (1.2).

The proof of (2.8) follows easily by averaging ~ first over its con—

dit ional dist ribution

(2 9) N ( (I  ~~~~~~~ ~ 
_
~~~~~~

) ,

as shown in [1, Lemma 1J.

The p roblem of evaluating mu ltivar iate empirical Bayes estimators

~~~~. 
‘

-~~
In this situat ion reduces to evaluating estimators of the inverse of anr : unknown covariance martix � because K

0 and * are unaffected by the ~1

-

~~~ -~~~~~~~ ~~~~ - :•
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I

4.

particular estimator under consideration and because the risk

EL0
1

, 
1
; 5) , called the “relative sav ings loss” in £11, onl y involves

an expectation over S having the Wishart distribution (1.1).

L j
‘p

k 

-~~~~ — ~— -~~~~ --~~~~-- ~~~~~.. . 
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3. AN ESTIMATOR OF TIlE COVARIANCE MATRIX WHIC h DOMINATES ANY
NULTIPLE OF S

Assume the distribution (1.1) and the loss function (1.2). We

consider estimators of the form (1.6). Denote u~ a tr(~H~)/p and let

(3.1)

We will show in Sec. 5 that 0 ~ < 1 for all and also tha t

I t r (~~~
1S)

( 3 . 2 )  = — E 
~~~~

I In the special case = ~ L , the maximum value ç = 1 is attained . Denote

c a (p
2+p—2)/(pk—2) so 0 < c < 1 and 0 < c < 1 if both p > 1 and k > p + 1.

‘t  -~

1
Theorem 1. The risk of ~ isH

R a EL(>.~~
1
, ~

•••l 
~~

(3.3) 
= + 

k-p-i 2 
-

L ~~

‘ 
In particular , is minimax , having risk

(3.4) R
0 

- 
pk-2 

~~~ -

V

which is uniformly smaller than the risk (p+l)/k of the best multiple of

S , (k—p —1 )S .

Proof. We compute the risk of V

~-l _ -l(3.5) — aS + b I / t r ( S )

from (1.2) as

~: 
?~

~~~~~~~~~~~~~~ ‘~~
- ‘ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- V~~~~~~~~



E tr (aS 1 
+ bI/ t r (S)

a
2 

—l 2ab , 1 2a
V 

=~~~~~~F .t r ( S ) + kw hl t r ( S )  k

b
2 1 2b t r (_ ~~~

IV
S) 

1 2+ pkw tr(~) 
— 

~~~~~~~ 
E 

tr(~) 
+ -

~j~j L~ trQ~ ~ )

( 1  2 
_ _ _ _  

2a 2ab 2a b 2b(3.6) = 
k(k—p-1) + 

k(pk-2) ~ 
- 

k 
+ 

pk(pk-2) ~ 
— + 1

—1 ,— 1 •where we have used (3.1), (3.2) and E(k—p—l)S = .~. . The minimizing

• value of b is obtained by differentiating (3.6)  and is b* = pk—2—a p

*which is independent of the unknown parameters . Inserting b into (3.6)

V 
• 

and simplif ying gives

V . 2 2
(3 7)  R = + (k—p—i—a) 

— 
(pk—2—ap)

k k (k—p— 1)  p k(pk— 2) ~~

Reparameter izing with a = (k—p—i) (1—~y) and substituting this value into
V 

(3.7) yields (3.3). Assertion (3.4) follows by setting ci = 0 in (3 .3 ) .

The proof is complete.

Discussion . If ~ is known , R is minimized at

(3.8) o* 
= cp / [i—p +cpJ

which increases monotonically f rom 0 to 1 as ~p increases from 0 to 1.
ê 

Then the risk is

* 2  *
~~

;

Vb (3. 9) R *  = + ~~~~ k

*‘
~~~~ I The case p = 1 (,

~. proportional to the identity) U = I yields the rule 
V 

-

(1.5) as an estimate. More generally ,  if a prior dis tribution on ~ is

:.A

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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- given , then the rule of the form (3.5) that minimizes the average risk

takes the form (1.6) with

**- (3.10) = cEp/ [ 1—E p+cEcp] ,

which depe nd: only on the a priori mean Ecp of p. R** then is given by

(3.9) with o rep laced by ~ . These facts are proven by averaging

(3.3) over the prior dist r ibut ion , and then by d i f f e rent ia t ing (3.3) ,

- perhaps mos t easily in the form

(3.11) R = ~~~~~~~~~~ [( 1-c)~~
2- (c~~ -ca) 2 Ep] .

I The minimal comple te subclass of the class of all rules of the

p form (3.5) with —
~~~ < a , b < is the class of rules >.~~~~~ (1.6) with

• 0 < o < 1. Thus a = (k—p— i) (l-~ ) and b = (pk—2) (c+c~—cO’) from the proof

- ‘ V of Theorem 1. To show that the rules with 0 < cy < 1 are a complete
4 — —

class , we note for fixed p that R is strictly convex with minimizer

n satisf ying 0 < ~ < 1. Therefo re , the risk of any rule with a’ ~ [0 , 11

may be decreased for all p by using the nearest value in [0, 1] to a’.

1. These rules are minimal complete since the minimizing a’ (3.8) is an

invertible function of p.

There are many minimax estimators (rules with risk not exceeding

4 . (p+l)/k) in the class (3.5). The best such estimator is because

the minimax estimators must have a = k—p—i to perform well at p = 0 ,

and then b = p2+p-.2 is the best choice for b.

I

• 
I,

:~
• 

V - 

~~~~~~~~~~~~~~~ 
V~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~ V V~~•j ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~
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-‘ 4. USING THE COVA PJ.ANCE ESTUIA TORS IN A SI MULTANEOUS ESTIMATION PROBLEM

in the context of Sec. 2, we are suggesting estimators of the p~ k

matrix 9 of the form

(4.1) ~~~~~ 
= (!

wi th given by (1 .6 ) .  Wi th respect to the squared error loss function

(2.6). the risk of o is computed by averaging over both X and b distri—

buted as (2.1), (2.2), and as a function of is

( 4 . 2 )  E.t ,(O 0 ) = 1 — w + wR
— —a’ 0’

which derives from (2.8) and (3.3) with w tr (~~~ )/p. Since we m a y

also wr i te

(4.3) w = (k-p-l)Etr(S
1) / p

and use (3.1) to provide an expression for wp, (4.3) may be written as

(4.4)  E~~~ , ~~
) = - 

(k-p-l)
2 

(1~~
2
)Etr(S~~ )

(p k—2) 2 1
pk (c4a’—ca’) E tr~~)

Both sides of (4.4) involve first an expectation E
9 
over the distribution

(2.1) of X given 9 , this expectation being a function of A 80’ only ,

followed by an expectation E
A 
over the distribution (2.2) of 9 for  fixed

A. Since the family of distributions of A is complete for A , (4.4) holds

even when the E
A 

expec tation is removed , prov ing the following theorem .

• - .-~~~ 
~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V 

~~~~~~~~ ~~~~~~ VV ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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T1~eorem 2. As a func t ion  of U the  rule of (4.1) has risk

(4 . 5 )  E~ -L (0 , ~~
) = 1 - ~~~~

_ l) 2
(l~~

2 ) E t r~~
_ 1

)

(pk—2)
2 2 1

V 
— 

pk (C~~~~~~4 E
~ r (S)

Each estimator U , 0 ~ < 1 is the re fore  i~ m in imax e s Y na t o r  of 0 f o r  the— —
squared error loss function (2.6) and has risk (4.5) uniformly lowe r than

• 1 the unit risk of the maximum l ikelihood es t imator  0 = N . Expression (4.5)

prov ides an unbiased estimate of the risk of 0 .

t h e J a m e s — S t e i n  e s t i m a t o r  is the rule a’ = 1  w i t h  r isk

L 1 (4 6 - 
(pk-2)~ E —i-

pk O tr (S)

The par t icular rule with a’ = 0,

(4 . 7 )  a - (k-p-l)S~~ -

V 

is the best in the class G as r a tr(80 ’) ~ and improves the risk

1-(k-p- 1) 2 E9 t r (S~~ )/p k of S = (I - (k-p-1)~~~
1)X by the amount

8 (~
2
+p—2)

2
~~ 1

pk B t r (~ )

2 2
..,~~~~ , 

The improvement (4.8) is largest a t O  = 0 where it is (p +p—2) /pk(pk—2).

Bounds on the last term of (4 .5) ,  ( 4 . 6 ) ,  and (4.8) may be computed for

any O from the fact that 

-

1 < E  pk—2 < 1
(4.9) 

l+r/(pk—2) — 0 tr (~) 
— i+r/pk

I 

_
_  

_

I

V V~~V V 
TV~~~~~~~~~~~~~~ .

T 

~~~~~~~~~~~~~~~~~~~~~
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Only assertion (4.9)  needs proof .  Since t r (S)  has a non—

V central chi—square distribution with mean pk+r , tr(S) X
~ k
(T), it

can be written as a Poisson mixture of central chi—squares as in [ 51,

say t r (~ ) 
~
— X2

k÷23
, J — Poisson with mean T/2. Letting E

1 indicate

• expec tation with respect to the Poisson distribution , V

1 _ 1
• ( 4 . 1 0 )  E

0 tr (S) 
— E

T pk+2J—2

I and the left—hand side of (4.9) is obtained from Jensen ’s inequality.

To obtain the right—hand inequality, write E, 1/(pk+2J—2) as

~ I 1 
[1 — 

~ e~~
1*’2 (T/2)i 2j

pk—2 j=0 
pk+2j—2

-‘ and notice that this can also be expressed as [1 — r E
1 

1/ (p k+2 J ) ] / ( p k— 2 ) .

Jensen ’s inequality E 1/(pk+2J) > 1/(p k - f r )  gives the result.

I
~ V i

H

0 .

1
-~~~~~~~~~~~~~~ V - -—. -—- -- . - -• ~~~~ ~_~•V ~ ~~~~~~~~~~ -~~~~~~_..---. V V VV...r ~~. V V V ~...V . _ ..V~~~~ __ V V  ____ _ ••__~~~~~____ V_ ~_~_•~~ ~~

• --~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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5. RISK FUNCTIONS AND THE FUNCT1ON q:

We will now give a more explicit evaluation of the function p which

appears in the risk formula (3.3) .  Let W1, . .. ,  W be independent

random variables and I’ - = W ./ ~ W . Let a , . . . ,  a be the eigenval ues of V
1 1 j 1 p

• ~~~, w = t r (E 1) fp  = 1(l/a .) /p  and define

(5.1) p a -
~~ E(~!1 a~ U .Y

’

The value (5.1) agrees with (3.2) because orthogonal invariance permits

- . the assump tion L diagonal wi th elemen ts a
~~
, . .. ,  a and then (3.2) with

W . = S~~ /a~ reduces to 
~ 

E (
~
Wj/~

J
i
W
i
), being (5.1). Because EW~ is

independent of (U 1, . . .,  U ) ,  
V

~ — -~~E 
1 E 1)k 2

V 

~~~~~~w (Z.~~U )  EW .

-~ 

•
~ i i  3

(5 2 — E pk—2 
— E 

pk-2
-, 

)_ — 
w E o W~ 

— w tr(S)

establishing the equivalence of (5.1) and (3.1). Note 0 < p < 1 since

V 
l/
~~

YjUi
< E I J j/a . and EEU/a = i E l/a~~~.w.

Define

(5.3) p p/wtr (~ )

as the squared cosine of the angle between E~ a n dE 2 , so 0 <  p < 1.

-
V Jensen ’s inequality applied to (5.1) shows p > p .  We have bounds

p < p < m i n (1., kp— p

_____ - 

since letting ii~ = a~ /La~ in (5.1) gives

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_____________

- _ _ _
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1 1 1 1 •

V 

( 5 . 5 )  = 
La . En

1U .  ~ La .

Taking expectations of (5.5) and using E l /U
~ 

= (k p—2)/(k—2) for all

i proves (5.4). The bounds (5.4) become tight as k increases an d

fo r any p

( 5 . 6 )  
~~~~~~~~~~~~~~~

The index henceforth will be used to indicate the dependence of p on

k. The values and p are unity only when E = aI , i.e., only when
L

all a~ are equal , and t he lower bound of (5.4) is the better approximation

when the a . are near ly equal. Dispersed a
~ 

cause cpk and p both to approach

zero wi th  the uppe r bound of (5.4) being attained asymptotically if at

least one a~ is f in i te  and one a . app roaches inf in i ty .  
V

In the special case p = 2 , CPk 
depends on~~ only through the ra tio

A = a
2

/a
1 
of the largest to the smallest eigenvalue . Then values of

are generated recursively for A ~ 1 by 
V

p1 
= 2~~~~/ (A+ 1 )  /~, p2 = 2A log(X)/(A

2
-1)

( 5 . 7 )

= 

~~~~ (X.-i)~~ 
~~~k—2~ 

= ~I
2
~ (i_cp

k 2 )
~~ 

k>3 .

Obviously 
~k 

= 1 if A = 1. We omit the proof of (5.7) to save space .

The limiting value of as k is p = 4X/ (l+A ) 2 .

The function p6 
is plotted in Figure 1 for the case p = 2 , k = 6

together with the four ‘~~sks, from (3.6),

J 
g 
_ _ _ _ _ _ _ _

~

V

~~~~~

V

~~

V

~~

_

~~

_

~~~~~~

_ _ _ _  ~~~~~~~~~~

~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-~~~~~~~~~~~~~ SV~~~VV V .. .

~ 

~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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a= 1
V 1 . 0 ~~~. ~~ ~ ______.~‘\j—’~- 1.OOO

0.9 _ \

0 8  

\
\
\
\
\

\ 
~~~~~~~~~~~~~~~~~~~ 

Risks Ra 

.625
cz=.25

0.5 \---

0. 4 — 
.. a= O

0 3  \
S - -

0.2  — 

\
\
\

—S

• I - I I I0 1 j  I I I I I

1 2 4 16 32 64 129 256 ( log scale)

..
~~~

Fig. 1 — A plot of 46 and the ri~~s (r elative savings losses )

k R 0 ,R~25 ,R 5 ,R~ of (3.6) aga nst the ratio of the largest
i~1 to the smallest eigenvolue for the case p=2 , k=6

~~~~~~~~~~~~~~~ z~~~: ~~~~~~~~~ 

- 
- -

~~~~~~~~~~~~~~~~~~~
-
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( 5 . 8 )  R = . 5  + .5~~ — (1 + l .5a )
2
p

6

for  a’ = 0 , .25, .50, 1. Figure 1 illustrates that  a’ = 0 is best if

= 0 and a’ = 1 is best if c~ = 1 as confirmed by (3.8) , while inter-

mediate values like a’ = .25 and a’ = .5 are e f fec t ive  compromises if

the extremes c~ = 0 or = 1 are not espec ially likely .  It is tempting

to estimate c~, say by a function Cf[tr(S
1
)tr(S)], C close to

p(pk— 2 ) / ( k — p — 1) ,  and to use this to determine an estimated value &

from (3.8). In the s i tuat ion of Figure 1, for  example , the hope would

$ be to produce a rule with risk function close to the lower envelope of

• the risk f unc tions graphed . Our calculations for the case p 2 show tha t

~ 
j the suggested rule works fairly well, provided & is forced to be less than

unity , and that smaller values of C could be better. But no clear guidelines

for the use of such “adaptive” rules are available at this time.

The improvement of the rule a = 0 over the best multip le of S 1

is measured by the distance between the R
0 

curve and the horizontal

line R = .5 in Figure 1. This is a 27 percent improvement in risk at

A = 1; larger improvements can occur in cases with k large and p near k.

For any p, ~~~~~ has lower risk than provided p < l/(l+c).

This holds for p = 2 , k = 6 provided ~A >  1.90. Note that .,/~~ 
is the

“ ratio of the standard deviations of the major and the minor principal
‘

V
.”

• ‘~ c~~nponents defined by the two rows of X.

0 .

~

I

- ~~~~~~~~~~~~~~~~~ ~-~~~~~- —. VV~~~~~ V V ~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~

___________ ~~~~~~~ ~~~~~~~~ ~~~~~~ ~~~~~~~~~ ~~~
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6. THE RESTRICTION E 1 < I

We know < I  since E I + A with A nonnegative definite, but

V the estimator s of (1.6) do not obey this inequality. This undesirable

- feature may be overcome as follows. Diagonalize = F’L~i’ with F a pXp

orthogonal matrix and A the diagonal matrix of elgenvalues ô1~ 
A

* * 
—

preferred estimate is ~ a 
~~~~~~~ r’ with min (1, 6 .), i = 1 , . . . ,

• — since this estimate satisfies the restriction ~-. < I. The loss function
—a’ - —  V

(1.2) is either unchanged or reduced for every S, E by this modification ,

—l *_1 —1 ~~—l(6.1) L(E , E ; S ) < L(E ,~~ ; S )

for all S. 
V

*—lThe improved estimator E has risk uniformly lowe r than R of
V 

—~ a’

(3.3) because of (6.1) . In the simultaneous estimation context of Sec. 4,

the estimator

* *_lV ( 6 . 2 )  8 a (I — E ) x

5I
S 

*
therefore has risk as a function of A, EA

E
O

S
~
(8, 0), strictly lower than

(4.4). The risk as a function of 0, E8
.t(0, 0), is likely to be lower

than (4.5) for all ~ , and is known to be for p = 1. This conjecture

is not proved for p > 2 however because the completeness argument

used to establish (4.5) does not apply witht (there is no convenient

expression for its risk as a function of A).

The proof of (6.1) notes the convexity of the set of matrices

0 < E  < I , the fact that the loss function L is a metric derived

‘V Sc

~~~ ~~~~~

L’ ~~~~~~~~~~~~~~ -
. — — 

~r~~~
-
~~ =i 

--
~~~~~~~~~~~~~

-
~~~~~~~~~

--
~~~~ 

~~~~~~~ ~~~~~~~~~~~~~~~~ ~~~~~~



from an Euclidean inner product , and that  in this metr ic  is the

I closest matrix in the convex set to~~~ ’. The precise argument is

V given in 11, Sec. 6].

. V)

4

~~. I
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V
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7. DISCUSSION

— — 1
The fact that domi n ates the best fully invarian t est imator

— 1 —l(k — p—l )S  of for our not fully invariant loss function suggests

that shrinking the best multip le of S towa rd the identity matrix may

be e f f e c t i v e  in mo re general situations of estimating a covariance matrix.

All of the estimators of in this paper are orthogonally invariant , of

the form

(7.1)

with r the matr ix  of eigenvectors of S, say S = F’ DF , D diago nal , and

j

V 

& a diagonal matrix whose entries are functions of the eigenvalues

D of 5, & = 3(D). Explicitly, the best linear multiple of 0, 2~(S) = S/ ( k — p — l ) ,

estimates the i- tb eigenvalue of by &~ 
= d~/(k— p—l), while

= ((k-p-l) S~~ + (p
2+ p - 2) I/ t r ( S) )~~ u ses

( 7 . 2 )  & (0) 
= 

2 d
1 + (~_~~~

2) 
~.L

so imp roves on ~~ b y sh rinking all the estimated eigenvalues toward

zero , the large r eigenvalues being shrunk p roportionatel y mor e than the
~~

smaller. This is reminiscent of the James—Stein es t imator  of k mean s

[3 J , and the basic phenomenon seems to be the same : t h e  eigenvalues of

5, considered as an ensemble of p numbers , are distorted in a systematic

nonlinear way from the eigenvalues of ~~.. A unive rsally imp roved es t imator

is obtained by undoing this distortion.

‘ 
-
~~ -

V

- , For the  general problem of estimating a covariance matrix , it would V

be more satisfying to show that estimators of the form



V_ V 
~~~~~~~~~ 0.V — ---~--.--—- ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~
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( 7 . 3 )  F (aS~~ + bI/tr(S))~~

• dominate the best fu l ly Invariant estimator of when the loss function

is also fu l ly invariant, but the computatio ns are d i f f i c u l t  for such

V loss f , Vlc t i o n s.  The loss function used here leads to nicely computable

V 
risk exp ressions for  rules of the form (7 .3) , permit t ing a compa r ison of

their operating characteristics , and more importantly showing where the

additional information lies for improving the best ful ly invariant esti—

- mator. i t  also has the vi r tue of ar ising na tu rally from the squared error

estimation problem for 0.

In Section 5 of [3], Stein considered an example with a fully
‘ I

1 invariant loss function and found a constant—risk estimator (invariant

under the ~ower triangular group of matrices , but not orthogonally
t

invar ian t )  which is uniformly better than the best fully invariant

estimator. The expected value of his estimator , like here , is always 
V

closer to 0 than the mean of the best fully invariant estimator . He has 
V

recently made further progress on the problem of covariance -~~~imation by

• using a method for find ing unbiased estimators of the risk function [7].

~~ V In the empirical Bayes and the simultaneous estima t ion of means
- 

situations the loss function L is natural, as the deriva t ion in Sec. 2

shows , and the simple est imators  of 8 ( 2 . 7 )  based on the form (7.3) haver~~~

~ I 
computable risks. This simplicity also leads to risk expressions as a

. 4. fu nction of 0 (Theo rem 2) and yields unb iased estimates of the risk. These

estimators may be criticized for being inadmissible since they ignore

the restriction F~~ <1. The rules of Sec. 6 may be nearly admissible

though , at least in the case p = 1 they reduce to the James—Stein positive—

S part estimator for which no uniform Improvement has ever been offered .

I

U ;  
. 

~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Orthogonally invariant estimators of 0 take the form (2.7) with

as in (7.1), and ar e not necessar il y of the fo rm (7 .3) .  One approach

to finding alternatives to (7.3) was suggested at the end of Sec. 5.

Stein [7] offers another method by producing unbiased estimates of the

risk of arbitrary orthogonally invariant rules. Other rules having this

or thogonal ity prop er ty are offered  by Gollob [2] and Mandel [4]. Their

V 
estimates of 0 correspond to using (7.1) in (2.7) where 1/a . = 1 if d

1
- .
‘ fai ls  to pass a significance test and otherwise is zero , forcing o c < I.

• When p = 1 their rule is equivalent to estimation following a preliminary

test that = 0, a procedure that is known not to be minitnax and to be

I uniformly dominated by some positive—part version of the James—Stein

estimator [6].

~~

_ _  
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